Questão 155 da prova amarelo do segundo dia do Enem 2017
A figura ilustra uma partida de Campo Minado, o jogo presente em praticamente todo computador pessoal. Quatro quadrados em um tabuleiro 16 x 16 foram abertos, e os números em suas faces indicam quantos dos seus 8 vizinhos contêm minas (a serem evitadas). O número 40 no canto inferior direito é o número total de minas no tabuleiro, cujas posições foram escolhidas ao acaso, de forma uniforme, antes de se abrir qualquer quadrado.
Em sua próxima jogada, o jogador deve escolher dentre os quadrados marcados com as letras P, Q, R, S e T um para abrir, sendo que deve escolher aquele com a menor probabilidade de conter uma mina.
[a probabilidade da bomba estar no ponto P ]= 4/28 = 1/7 e [a probabilidade dele não estar]= 6/7
[a probabilidade da bomba estar no ponto Q]=1/8 e [ a probabilidade de ele não estar ] = 7/8
[a probabilidade da bomba estar no ponto S]=35/70=1/2 e [a probabilidade de ele não estar]=35/70=1/2
[a probabilidade da bomba estar no ponto T]=21/56=3/8 e [a probabilidade de ele não estar]=5/8
[a probabilidade da bomba estar no ponto R]=30/220=3/22 e [a probabilidade de ele não estar]=19/22
Como 7/8>19/22>6/7>5/8>1/2.
Q>R>P>T>S Então o quadrado aberto será com a letra Q.